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Abstract—This paper proposes an approach for maintenance
management of wind turbines based on their life. The proposed
approach uses performance analysis and anomaly detection
(PAAD) which can detect anomalies and point out the origin
of the detected anomalies. This PAAD algorithm utilizes neural
network (NN) technique in order to detect anomalies in the
performance of the wind turbine (system layer), and then applies
principal component analysis (PCA) technique to uncover the
root of the detected anomalies (component layer). To validate
the accuracy of the proposed algorithm, SCADA data obtained
from online condition monitoring of a wind turbine are utilized.
The results demonstrate that the proposed PAAD algorithm has
the capability of exposing the cause of the anomalies. Reducing
time and cost of maintenance and increasing availability and in
return profits in form of savings are some of the benefits of the
proposed PAAD algorithm.

Index Terms—Condition Monitoring, Fault Detection, Mainte-
nance, Neural Networks, Performance Analysis, Principal Com-
ponent Analysis, Wind Power Generation

I. INTRODUCTION

ENVIRONMENT friendly and cost effectiveness are two
of the factors that have driven societies towards vast

utilization of wind energy by large investment and deployment
of wind turbines and wind farms in the past few decades. With
being able to effectively operate and produce power for up to
25 years [1], some of the early installed wind turbines are
approaching their end of life. This aging matter is bringing up
more frequent incidents (failures, malfunctions etc.) and longer
unavailability which raise the alarm that a more developed
monitoring system is required to address these issues.

Condition monitoring systems (CMS) on modern turbines
use the data from supervisory control and data acquisition
(SCADA) systems where they record the data of turbines
through different sensors installed on them. An accurate CMS
does not necessarily require large numbers of sensors (hence a
costlier system), rather a system that provides the owner of the
asset with enough information to avoid anomalies and failures
with an acceptable accuracy [2], [3]. Moreover, including
operational conditions in the analysis can help improve the
maintenance management [4].
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Recently, there have been several studies that benefit from
SCADA data and they design CMSs for wind turbines. Yang
et al. [5] investigated the processing of the SCADA data and
raised some concerns on the analysis of these data as they had
large variations and this makes it difficult to detect incipient
failures. There have also been a few research works where they
review applied techniques on condition monitoring and fault
diagnosis of wind turbines [3], [6]–[11]. Ultimately, all these
works suggest that the need for developing an algorithm that
can manage a broad area is yet to be achieved. Furthermore,
most of the approaches and techniques applied are focused on
a particular subassembly (a component, e.g. generator, pitch
system etc.) in the wind turbine.

There have been several research works focusing on reli-
ability and maintenance of wind turbines considering them
as a whole or in subassemblies [12]–[19] and point out the
importance of standardized data and their possible impacts
which provided the basis for this work. For instance, some
works focus particularly on pitch system in the wind turbine
[20]–[24].

The techniques utilized must be able to model normal beha-
vior of the component in order to detect anomalies. In reality,
this often requires modelling nonlinear relationships among
several variables (internal and external) that characterize the
behavior of an industrial component. Neural network (NN)
is one of the techniques widely used in the analysis of wind
turbines mainly due to its flexibility and adaptability to various
conditions and it offers the possibility of modelling these
nonlinear relationships. Its applications range from behavior
prediction to classification and fault diagnosis and have been
applied to different subassemblies in a wind turbine [25]–
[28], e.g. gearbox [29]–[31], bearings [32], [33] and generators
[34]. Adaptive neuro fuzzy inference system was applied to
find malfunctions in the wind turbine [35], [36]. Since the
results are the outcomes of pure statistics without interference
of human knowledge and information, an expert manually
implements a number of rules to narrow down the possible
origin of the failure. Lie et al. [37] presented an improved
fuzzy-synthetic assessment method and applied it to generator
of a wind turbine.

There are several areas to improve in order to obtain a
thorough CMS. The areas include sensors and data acquisition
[38], data processing [39], behavior and performance model-
ling [40], abnormality and anomaly extraction and evaluation,
diagnosis and prognosis, and interactive and integrated proce-
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Fig. 1. The proposed PAAD algorithm

dures etc. Since they cover a wide area, each individual work
can focus on specific parts. This work provides a link between
system layer and component layer which makes it an overall
condition monitoring technique for wind turbines.

The work in this paper presents a data-driven generic
performance analysis and anomaly detection (PAAD) algo-
rithm (Figure 1) with automation goal. One of the resultant
advantages of this approach is decrease in maintenance down-
time. Since this approach is able to point out the component
(subassembly) which is responsible for the abnormality, the
maintenance crew will not need to search the entire system
(e.g. wind turbine) to find the faulty component; rather, they
can directly hover over the defective part and perform the
maintenance [41]. The other connected advantage is increase
in availability of the system and hence, higher savings and
efficiency.

II. PAAD ALGORITHM

A. Step1: Preprocessing

Measurements recorded by the SCADA system create a
large raw dataset. Normally, these data are not in a format
to be directly utilized for any purpose. The measurements are
recorded for each parameter at frequencies less than 10 minute;
however, one average number for these values is provided as
the final value, over the 10-minute period.

Analyzing the large recorded data sets can be complex,
time-consuming, inefficient and in cases, impossible due to
limitations of computational power. For these reasons, several
techniques such as Clustering, Scatter plot, Confidence inter-
vals and Pearson Correlation (PC) [42], equation (1). Since
statistical techniques lack physical knowledge, consideration
of cause-and-effect relationships will improve the analysis.

The information provided by PC technique only show
whether two variables are linearly related. Although this is
limited, it can present elementary information which at the
preliminary stage of the analysis is advantageous. The types
of information that PC technique offers are as follows [43]:
• Sign of the coefficient: While + sign in the output coeffi-

cient means a linearly positive relationship among the two
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Fig. 2. Multilayer Perceptron Feed-Forward Neural Network Structure

variables, - sign means a linearly negative relationship. 0
shows that there is no linear relationship.

• Magnitude of the coefficient: While values in the range of
[0.1, 0.3] mean small correlation between the variables,
values in the range of [0.3, 0.5] mean medium correlation
level exist. Values larger than 0.5 show that there is a
significant correlation.

pcx,y =

∑n
i=1(xi − x′)(yi − y′)√∑n

i=1(xi − x′)2
√∑n

i=1(yi − y′)2
, (1)

where X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} are the
two of input parameter vectors to be compared, x′ and y′

are mean values of their corresponding vectors and n is the
number of observations.

B. Step2: Anomaly Detection

Analysis of the performance of the monitored wind turbine
is performed through its power-curve. For this purpose, a
normal behavior model is created that the inputs of the model
are real-time inputs of the wind turbine (e.g. wind speed,
ambient temperature etc.) and information about subassem-
blies (e.g. gearbox temperature, oil temperature etc.). The
output of the model, which is an expected power-curve, is
created. Then, the output of the model is compared with
the real-time measured output power of the wind turbine.
Whenever there are discrepancies between these two values,
an anomaly is flagged. It should be noted that a tolerance level
needs to be defined for the deviations of the model’s output
from the measured power. This threshold can be obtained
through clustering techniques, defining a confidence interval or
from experience and through several trials with the model. In
this paper, NN technique (multilayer perceptron feed-forward,
Figure 2) is utilized to build the normal behavior model for
the wind turbine.

The first phase in building the NN model is to find the
optimum configuration for the NN. To find the best configu-
ration for the NN, various possible combinations should be
tested. Different performance evaluation methods can be used
in the training of the NN and in this study these four methods
were applied: mean absolute error (MAE) equation (2), mean
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squared error (MSE) equation (3), sum absolute error (SAE)
equation (4) and sum squared error (SSE) equation (5).

MAE =
1

k

k∑
j=1

| zi − z′i |, (2)

MSE =
1

k

k∑
j=1

(zj − z′j)
2, (3)

SAE =

k∑
j=1

| zj − z′j |, (4)

SSE =

k∑
j=1

(zj − z′j)
2, (5)

where zj and z′j are NN output and target values and k is the
number of data points.

As shown in Figure 2, structure of the NN utilized in this
work constitutes one hidden layer and one output layer where
each has a different activation function.

ActivationFunction1 = f1(w
h
i xi + bh), (6)

ActivationFunction2 = f2(w
o
i v

h
i + bo), (7)

where wh
i are weights of the neurons in hidden layer, bh is

the bias value of hidden layer, wo
i are weights of the neurons

in output layer, bh is the bias value of output layer and vi are
outputs of hidden layer to output layer.

Activation Function1 (f1) calculates outputs of the hidden
layer based on Sigmoid function with Hyperbolic Tangent
form as shown in equation (8) [44]:

f1(w
h
i xi + bh) =

2

1 + e−2(w
h
i
xi+bh)

− 1, (8)

and Activation Function2 (f2) estimates outcome of the output
layer based on a linear function as shown in equation (9):

f2(w
o
i v

h
i + bo) = wo

i v
h
i + bo. (9)

A powerful supervised learning algorithm, Scaled Conjugate
Gradient is applied in order to train the NN [45]. Based on
the chosen performance function, the algorithm’s objective is
to minimize the function by tuning biases and weights of the
NN.

C. Step3: Root Cause Analysis

In multivariate statistical analysis, principal component ana-
lysis (PCA) is one of the most important techniques to deal
with correlated data (in the wind turbine case, generated
active power, wind speed, rotor speed and generators oil
temperature are some of the correlated measured variables).
PCA transforms these correlated data into uncorrelated linear
data by defining a new coordination system (in this case, the
values of generated active power, wind speed, rotor speed and
other variables are transferred to a new coordination system
so that these variables lose their correlation and become
linearly uncorrelated). These new resultant variables are called
Principal Components and they aim to capture highest levels of

change and variability in the data; consequently, first principal
component bears the highest impact in the data [43], [46].

After the anomalies are detected in the system, the data are
sent to be further analyzed by PCA. PCA primarily says how
many of the input variables are sufficient to model the system
without losing any characteristic. The inputs of PCA are the
extracted data points that were considered to be anomalies by
the NN model in the previous step.

At first, PCA calculates the covariance matrix for the data.
For an n dimensional data, the covariance matrix is as shown
in equation (10) where cov(x, y) is the covariance between x
and y calculated as equation (11) with n data points.

[C]n×n = [cov(x, y)], (10)

cov(x, y) =
1

n− 1

n∑
i=1

(Xi −X ′)(Yi − Y ′). (11)

Then PCA extracts the eigenvectors and eigenvalues of
the covariance matrix. Afterwards, principal component is
defined as the eigenvector that has the largest eigenvalue. A
feature vector, a matrix of vectors, is then created from these
calculated eigenvectors. One could consider only those vectors
that correspond to highest eigenvalues, or all in case would like
to maintain complete data. By multiplying the feature vector
into the transposed of original data, final PCA outcomes in
terms of new principal components (eigenvectors) [47].

Here, four outputs of PCA that can be used are com-
ponent coefficients, component scores, latent and explained.
Components coefficients give the coefficients of the principal
components and component score gives the original data
in the new coordinate system. The latent output gives the
variance of the newly defined principal components and the
explained output provides information on the percentage of
these variances.

III. APPLICATION OF PAAD ALGORITHM

The case study comprises recorded data of 62 signals
from SCADA system of a wind turbine. The data consist of
measurements the period of approximately 22 months, hen-
ceforward named WindMSP1 and WindMSP2 data sets. The
only difference between WindMSP1 and WindMSP2 is that in
WindMSP2, the wind turbine experienced some abnormalities
in its performance and WindMSP2 holds the measurements
when the abnormalities occurred. Thus, WindMSP1 is a smal-
ler set in WindMSP2 when no anomaly was observed during
operating time.

A. Step1: Preprocessing

1) NaNs Replacement: Since dismissing the measurements
can have significant impacts in modeling and analysis, the
NaNs were replaced. Available values before and after the
NaN point were located and the NaN value was replaced
with an average value of these two available values. In this
way, if an abnormality happened for some period of time, the
resultant variation can be reflected in the data by the difference
between the values that were measured before and after that
abnormality time.
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Fig. 3. Mutual behavior of seven parameters in WindMSP1

2) Dimensionality Reduction: Table I presents a complete
list of the recorded signals by the SCADA system. Since
some parameters do not change based on the power or their
change does not cause any specific variation to the output
power of wind turbine, there will be a reduction in the number
of parameters for modeling. It should also be noted that the
cause and effect relationship should be taken into account. The
seven primarily chosen parameters are active power generated
by wind turbine (APGWT), pitch angle (PA), rotor speed
(RS), ambient temperature (AT), gearbox temperature (GT),
temperature of oil in gearbox (TOG) and wind speed (WS).
These parameters were selected solely from experience.

TABLE I
LIST OF RECORDED SIGNALS BY THE SCADA SYSTEM

# Parameter (unit) # Parameter (unit)
1 Year 32 GROUND RFC 1 Version
2 Month 33 GROUND RFC 2 Version
3 Day 34 GROUND RFC 3 Version
4 Hour 35 GROUND ILC Version
5 Minute 36 GROUND RFC Version
6 Second 37 Hydraulic Group Pressure (bar)
7 Wind Direction 38 Hydraulic Group Temp
8 Ambient Temp. (C) 39 Hydraulic Valve Output Voltage
9 Ice Detection Temp. 40 Gearbox Temp. (C)
10 Wind Speed (m/s) 41 Gearbox Oil Temp. (C)
11 Elect. Generator Ring Temp. (C) 42 Year ProdPower
12 Elect. Generator LA Bearing Temp. (C) 43 Day ProdPower
13 Elect. Generator LOA Bearing Temp. (C) 44 Hour ProdPower
14 Power Factor Set-Point 45 Month ProdPower
15 Elect. Generator Alarm Temp. (C) 46 Producible Power (W)
16 Generated Active Power (kW) 47 Total ProdPower 1
17 Generated Total Power (kW) 48 Network Frequency
18 Elect. Generator Stator Power (kW) 49 Network Power
19 Generated Reactive Power (kVAR) 50 Network Reactive Power
20 Elect. Generator Rotor Power (kW) 51 Network Voltage (V)
21 Elect. Generator Winding 1 Temp. (C) 52 Pitch Angle (deg)
22 Elect. Generator Winding 2 Temp. (C) 53 Rotor Iced Possibility
23 Elect. Generator Winding 3 Temp. (C) 54 Rotor Speed (rpm)
24 Elect. Generator Speed TOP (rpm) 55 Stopped By Tool
25 Mechanical Over Speed (rpm) 56 Ambient Temp TOP (C)
26 Nacelle Position 57 Elect. Transformer Max Temp.
27 Yaw Brake Pressure 58 Elect. Transformer 1 Temp.
28 Nacelle Temp. (C) 59 Elect. Transformer 2 Temp.
29 Tower Height 60 Elect. Transformer 3 Temp.
30 Elect. Generator Speed GROUND (rpm) 61 High Speed Detection
31 GROUND Version 62 Wind Turbine State

One technique is scatter plot of parameters. The idea is
simply to look at the graphs and see if some particular
relationship (linear or nonlinear) can be observed with naked
eye. If no pattern seems to exist, it would be advisable to
dismiss that parameter. Figure 3 displays the relationship
between the primarily selected parameters and the APGWT.

Table II displays the Pearson Correlation between a few

TABLE II
RESULTS OF PEARSON CORRELATION ANALYSIS FOR WINDMSP1

Parameter APGWT
Ambient Temperature - 0.416
Nacelle Temperature - 0.081
Pitch Angle - 0.207
Gearbox Temperature + 0.363
Temperature of Oil in Gearbox + 0.392
Rotor Speed + 0.728
Wind Speed + 0.876
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Fig. 4. Detected anomaly points in WindMSP2

variables and APGWT. WS variable shows the highest linear
relationship to APGWT. As shown, Nacelle Temperature does
not represent any linear relation.

3) Normalization: After parameters in building the model
are selected and the NaNs are substituted, the data are scaled
and normalized. Normalization converts original data into a
newly defined range. This indeed matters when industry would
like to maintain privacy of its asset’s data. The normalization
range for each parameter is: APGWT:[0,2000], PA:[0,90],
RS:[0,16], AT:[0,35], GT:[0,80], TOG:[0, 70] and WS:[0,30].
The unit of each parameter is [kilowatt], [degree], [rpm],
[celsius], [celsius], [celsius] and [celsius], respectively.

B. Step2: Anomaly Detection

1) Building NN: Inputs of the NN are PA, RS, AT, GT,
TOG and WS, and APGWT is the target input. Testing various
configurations has resulted in creation of 60 different NNs.
Two layers, one hidden layer and one output layer, were
selected for the NN. It should be mentioned the data in
Training, Validation and Testing are divided randomly and
Training Ratio of 70%, Validation Ratio of 15% and Test Ratio
of 15% have been applied.

2) NN Training Outcomes: Table III shows the training
results of the NNs. The PA parameter exhibits low level of
accuracy when it is used as a single input, with the highest
level of accuracy at 74%. This is due to the fact that the
training of the NN tries to familiarize the model with all
various available behaviors in the data and large range of
variations in PA makes such task very challenging. After
changing other parameters, considering PA as a single input,
the maximum achieved improvement in the accuracy was
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TABLE III
VARIOUS TESTED NEURAL NETWORKS FOR BUILDING THE MODEL USING WINDMSP1

Input Output

NN Input Target Output Hidden Layer Performance Evaluation Method Performance Iteration Duration (MM:SS)
Accuracy (%)

Training Validation Test All
1

PA APGWT

10

MAE 226 212 00:11 67.728 67.813 65.358 67.391
2 MSE 199696 92 00:06 71.290 73.254 70.705 71.491
3 SAE 20515095 370 00:18 69.837 71.592 71.168 70.301
4 SSE 18524265462 56 00:10 71.401 72.023 71.819 71.559
5

20

MAE 214 435 01:04 70.128 70.527 69.936 70.161
6 MSE 191101 65 00:06 72.989 72.301 73.407 72.947
7 SAE 19921847 195 00:12 70.639 71.097 71.128 70.782
8 SSE 17729273653 55 00:05 72.964 73.193 73.035 73.007
9

50

MAE 209 692 02:01 70.825 70.098 69.998 70.595
10 MSE 186981 89 00:12 73.915 72.862 73.112 73.636
11 SAE 18365149 952 02:35 72.017 71.675 72.297 72.007
12 SSE 17345756035 46 00:07 73.423 74.382 74.311 73.701
13

TOG APGWT

10

MAE 216 414 00:20 0.85383 84.810 85.192 85.270
14 MSE 108156 73 00:13 85.650 85.801 86.126 85.745
15 SAE 19860487 68 00:09 85.529 85.490 85.203 85.472
16 SSE 10046781727 21 00:03 85.867 85.881 85.080 85.753
17

20

MAE 203 273 00:17 86.596 86.589 86.198 86.536
18 MSE 97885 78 00:13 87.143 87.047 87.606 87.199
19 SAE 18284890 111 00:24 87.066 87.066 87.126 87.075
20 SSE 9049578417 156 00:29 87.331 87.009 87.243 87.271
21

50

MAE 198 550 01:50 86.573 86.822 86.347 86.576
22 MSE 100630 18 00:04 86.875 86.652 86.738 86.820
23 SAE 18243110 207 00:52 86.929 86.592 86.493 86.814
24 SSE 9065135049 65 00:27 87.305 86.737 87.481 87.248
25

WS APGWT

10

MAE 69 74 00:14 94.292 94.269 95.011 94.395
26 MSE 44137 127 00:14 94.337 94.499 94.873 94.443
27 SAE 6382392 7 00:01 94.387 93.841 94.969 94.395
28 SSE 4099235357 16 00:02 94.465 94.309 94.500 94.447
29

20

MAE 69 207 00:44 94.283 94.978 94.434 94.408
30 MSE 44156 59 00:10 94.520 94.185 94.323 94.440
31 SAE 6365863 369 01:01 94.376 94.229 94.728 94.406
32 SSE 4100660843 11 00:02 94.630 93.638 94.385 94.446
33

50

MAE 69 189 01:02 94.375 94.314 94.640 94.404
34 MSE 44270 126 00:23 94.428 94.656 94.176 94.425
35 SAE 6374251 11 00:05 94.315 94.788 94.433 94.404
36 SSE 4103518408 22 00:04 94.617 93.807 94.251 94.441
37

WS + PA APGWT

10

MAE 50 58 00:09 99.109 99.079 99.079 99.100
38 MSE 7230 120 00:07 99.123 99.047 99.118 99.111
39 SAE 4604124 6 00:01 99.101 99.085 99.107 99.100
40 SSE 638644505 79 00:05 99.155 99.167 99.146 99.155
41

20

MAE 49 499 00:40 98.970 99.084 98.894 98.976
42 MSE 5764 313 00:20 99.287 99.296 99.310 99.292
43 SAE 4094790 34 00:05 99.302 99.258 99.273 99.291
44 SSE 534570291 18 00:03 99.302 99.252 99.288 99.293
45

50

MAE 76 347 01:29 96.439 96.500 96.449 96.449
46 MSE 5757 232 01:17 99.289 99.309 99.296 99.293
47 SAE 4071580 77 00:19 99.306 99.258 99.258 99.291
48 SSE 533523088 21 00:06 99.293 99.339 99.259 99.295
49

WS + PA + TOG + RS + AT + GT APGWT

10

MAE 38 862 01:40 99.487 99.495 99.467 99.485
50 MSE 2885 164 00:10 99.647 99.636 99.652 99.646
51 SAE 3356199 55 00:07 99.645 99.642 99.646 99.645
52 SSE 254290172 79 00:11 99.664 99.674 99.660 99.665
53

20

MAE 40 498 00:38 99.443 99.428 99.483 99.447
54 MSE 3517 81 00:11 99.574 99.572 99.538 99.569
55 SAE 3556626 103 00:27 99.568 99.539 99.545 99.561
56 SSE 258631853 64 00:17 99.662 99.649 99.656 99.659
57

50

MAE 47 463 02:18 99.194 99.229 99.187 99.198
58 MSE 2763 164 00:40 99.661 99.660 99.666 99.662
59 SAE 2914994 784 02:49 99.717 99.721 99.712 99.717
60 SSE 202990237 43 00:17 99.733 99.732 99.730 99.732

7% (74%-67%), thus, it is preferable to use more than one
parameter to account for relation among parameters as well.

From performance point of view, NN49 obtained the lowest
value with MAE method (38), NN58 obtained the lowest value
with MSE method (2763), NN59 obtained the lowest value
with SAE method (2914994) and NN60 obtained the lowest
value with SSE method (202990237). Considering iterations,
NN39 achieved the lowest iteration number of 6 while NN11
has the highest iteration number of 952. Interestingly, none of
these two NNs has the lowest error in performance. On the
time duration of the operation, while NN39 has the lowest
running time (00:01), NN59 has the largest time (02:49). It
can be seen that MAE and SAE resulted in high number
of iterations and large running times more frequently than
other performance evaluation methods. From the accuracy
perspective, NN60 outperformed all other networks. After
considering all the discussed points, NN60 was chosen as the
optimum NN.

3) Verification of NN Outcomes: WindMSP2 dataset is
utilized in order to verify the accuracy of the model in anomaly
operating times. Figure 4 plots anomaly data points detected
by NN after applying a threshold in the model for WindMSP2.
It can be seen while the WS is at range [10:20], the APGWT
does not behave optimally and produces power below the
expected value [1000:1500]. In this work the threshold was
obtained through several trial-and-errors as well as cross-
validating the input data and the outcome. The threshold level
was defined as 200 units which means only those points with
higher values showed significant impact and therefore were
stored. This threshold is applied on the difference between
predicted and measurement data. Figure 4 verifies that the level
of the defined threshold is acceptable as it detects anomaly
points with high accuracy. In additional, it is expected that the
threshold level for each wind turbine (and each failure mode)
to be different.

C. Step3: Root Cause Analysis
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Fig. 5. Anomaly data points analyzed by PCA from WindMSP2

1) PCA Analysis: It should be remembered that after
WindMSP2 is analyzed, a new behavior, which origins from
the abnormality, is observed. This abnormal behavior is the
consequence of irregular performance of one (or more) of
the input variables. As the first principal component in the
PCA contains the highest variance in the data, by comparing
these outputs with the outputs resulting from WindMSP1,
the defective subassembly with abnormal behavior can be
uncovered.

2) PCA Outcomes: Table IV displays PCA results for
the anomaly data points extracted by the NN model from
WindMSP2. As it can be seen, PCA has created seven princi-
pal components. The most important observation from Table
IV is the behavior of the anomaly data points which shows
that the first principal component covers 41% of the variances
in the anomaly data. Thus, this principal component could be
the major reason for the anomalies.

Figure 5 visualizes the variables in a plot for 3000 anomaly
data points extracted by the NN in WindMSP2. The plot is
drawn from the Coefficients and Scores that are calculated
for each of the variables and their corresponding principal
components. They were scaled to the maximum Score value
and maximum Coefficient length. For example, the largest
coefficients in the second principal component (Component2)
correspond to the PA and WS variables; and for the first
principal component (Component1), PA has the lowest score in
the negative direction. GT, TOG, RS and APGWT variables
are closely grouped together because they show a coherent
behavior which is a significant observation. AT also obtains
the lowest value by the second principal component (Compo-
nent2).

Knowing that principal components 1 and 2 together ac-
count for more than 65% of the variance in the data (Table
IV), the reference for analyzing the results should be based on
these two principal components. From statistical perspective,
after analyzing WindMSP2, the final conclusion is that WS,
PA and AT are the three variables causing irregularity in the
performance of the wind turbine.

D. Results
NN accurately detected anomaly data points in WindMSP2

and statistical results concluded that PA, WS and AT are the

TABLE IV
RESULTS OF PCA ANALYSIS FOR ANOMALY POINTS BY NN IN

WINDMSP2

Latent Explained
PC1 2,873 41,041
PC2 1,720 24,568
PC3 1,060 15,141
PC4 0,878 12,545
PC5 0,367 5,236
PC6 0,056 0,802
PC7 0,047 0,666
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Fig. 6. WS for anomaly flagged data points in WindMSP2

main factors for the observed abnormality. Figure 6 displays
the histogram of the WS values during the anomaly time. It is
evident that the anomalies occurred when the wind speed had
a normal profile with average WS of about 10 (m/s). Similarly,
the AT behavior during this time is plotted in Figure 7 which
shows a normal behavior as well. It should also be remembered
that these data points are not sequential. As a conclusion, WS
and AT can be disregarded as the causes of detected anomalies.

The next variable flagged by PCA is PA. To verify this
as the final conclusion, further investigation is carried out.
Figure 6 shows that the anomalies happened when the WS
varied mainly between the values of 9 and 16. Figure 8
displays the performance of the wind turbine for the normal
data (WindMSP1) and anomaly data in (WindMSP2) over the
WS range of 9 and 16.
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Fig. 7. AT for anomaly flagged data points in WindMSP2
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One point to mention here is that Figure 8 demonstrates
how the model accurately detected the anomaly points. The
anomaly detection part has managed to correctly discover
an under performance situation in the wind turbine which
is very beneficial for the asset owner and the maintenance
management. From here, they can decide on a preventive
maintenance action prior to an actual failure which brings
about a significant impact for the system.

To review the analysis so far, Figure 8 shows for wind
speeds above 11 (m/s), the expected power should be higher
than the recorded power and the anomaly has been detected
accurately. Then, PCA suggested the reason for this underper-
formance is related to probably WS, AT and PA. Analyzing
the data of WS and AT confirmed these two parameters could
not be the cause of the observed situation.

Pitch system in the wind turbine operates through a con-
troller. This controller fits the angle of the pitch to the wind
conditions based on the orientation of the wind turbine. The-
refore, in analysis of PA variable, it must be remembered not
only the pitch angle is considered, but also other components
in the pitch system (e.g. the controller) are accounted for.
This is an extremely important point to be taken into account.
Considering the PA parameter can physically be origin of the
detected anomaly and PCA analysis has also flagged PA as the
major parameter, behavior of the PA during normal operation
and abnormality (in both data sets) is compared in Figure 9.

The abnormality shown in Figure 8 and Figure 9 can be
interpreted as follows: Although the wind speed is in normal
condition and follows expected behavior, the measured output
power is not following the correct path (many PA points with
86 and 90 degrees). Considering the structure of the pitch
system, the only remained diagnosis is that a component (e.g.
controller) in the pitch system is causing these anomalies (e.g.
reading/sending incorrect signals). This is one of the points
in designing a control algorithm in active pitch control as
well [48]. Final practical verification of the result was indeed
achieved after discussing the results with the wind turbine
owner and the owner claimed this abnormal behavior was due
to the testing of new controllers in the pitch system which is in
conformance with the result of the proposed PAAD algorithm.
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Fig. 9. PA versus WS

IV. CONCLUSION

This paper proposes an algorithm for performance analysis
and anomaly detection. The algorithm utilizes the data obtai-
ned from SCADA system of a wind turbine and is divided
into three steps: preprocessing of the raw input data, anomaly
detection and root-cause analysis. In the first part of the
algorithm, raw input data from SCADA system is processed
and the dimensionality of the data is reduced. A NN model
is built in the second step. Detailed phases in building the
NN are described by evaluating several important factors. The
created NN model detects anomalies through monitoring the
performance of the wind turbine from its power-curve and
extracts the detected anomaly data points. In the final step,
PCA technique analyzes the data in order to discover the origin
of the anomalies by exploring the information carried through
the data. To verify the model, real data have been examined
and the steps to apply and utilize the algorithm are explained
in detail. The results show that the algorithm is capable of
evaluating the performance of a wind turbine very accurately
and can also assist in discovering the root of anomalies.
The benefits of applying this algorithm are reductions in
maintenance time and cost and increase in availability and
in return profit of the wind turbine.
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